

会社案内および拡散浸透処理概要

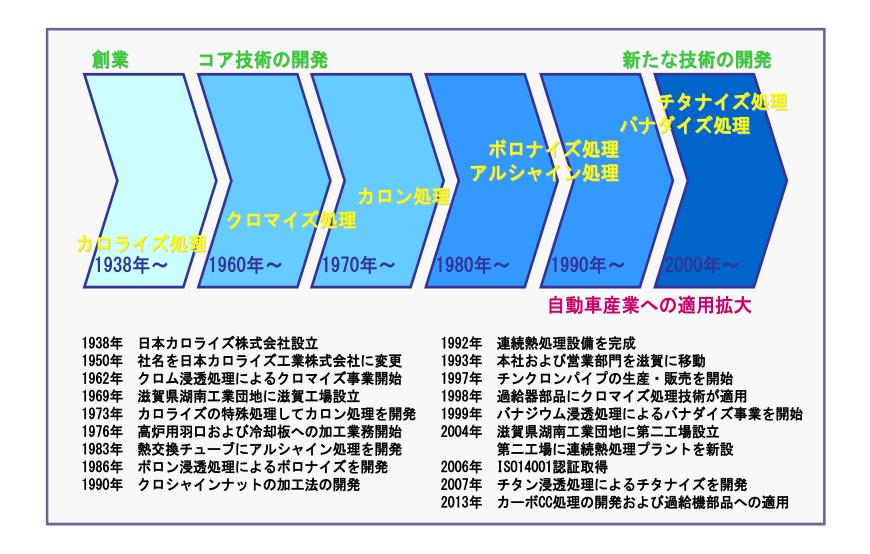
2023年4月現在

資本金: 8000万円

代表取締役:吉川 利平

従業員 : 35名 パート : 6名

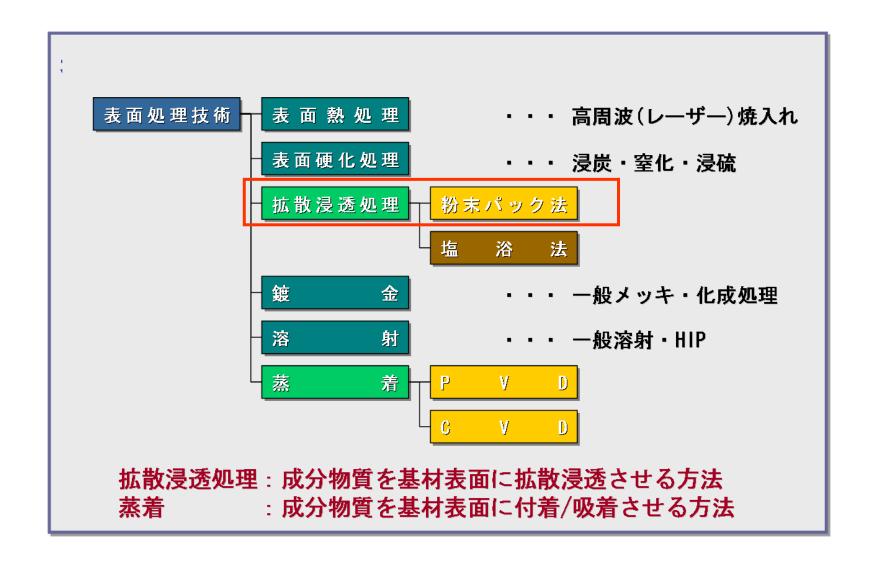
本社工場 滋賀県湖南市大池町-8 TEL:0748-75-1140 FAX:0748-75-2682

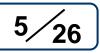

第二工場 滋賀県湖南市大池町-7-3

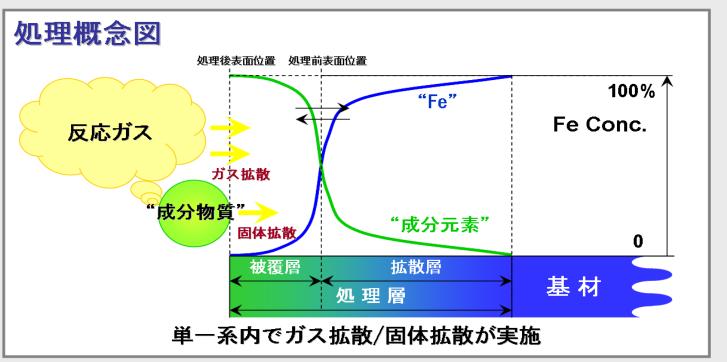
事業内容 : 耐熱性, 耐腐食性, 耐摩耗性を要する金属材料及び

機械部品に対する一切の適性加工並びに産業用機

械用具、金型の製作とその販売

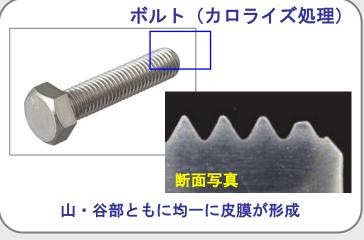



3. 表面処理の分類



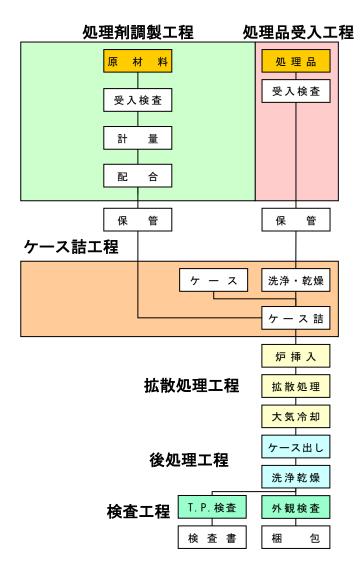
4. 拡散浸透処理の特徴

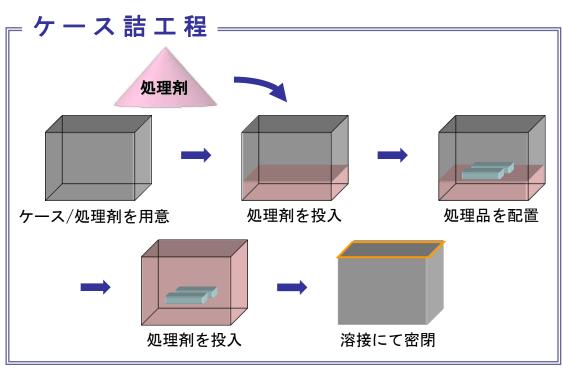
拡散浸透法は、拡散反応、積層反応が同時に生じる処理法である。


被覆層と基材間に拡散層が形成されるため密着性に優れている。ただし、基材との相互反応により層形成を行うため、層形成/層組成は基材組成の影響を受ける。



4. 拡散浸透処理の特徴


相互拡散するため、密着性がよい
処理剤中に埋没するため、付きまわり性がよい
処理品形状の影響を受けにくい
基材の影響を受ける
処理温度が高温のため、ヒズミが出る
現地施工ができない



5. NCK処理の工程

工程	工程の説明		
処理剤調製 原材料を配合し処理剤を作成			
ケース詰	ケース内に処理剤を詰め、処理品を処理剤中に埋め込む		
拡散処理	処理炉にて拡散処理実施		
後 処 理	処理品と処理剤を分け、洗浄ラインにて処理品を洗浄・乾燥		
検 査	合金層厚/硬度/外観等を検査		

NCKでの粉末パック法について

NCK表面処理法

カロライズ(AI拡散)

クロマイズ(Cr拡散)

バナダイズ(V拡散)

チタナイズ(Ti拡散)

ボロナイズ(B拡散)

耐熱•耐食性

 耐摩耗性

耐エロージョン性

各金属元素を基材表面に拡散浸透させ、各特性の処理層を形成

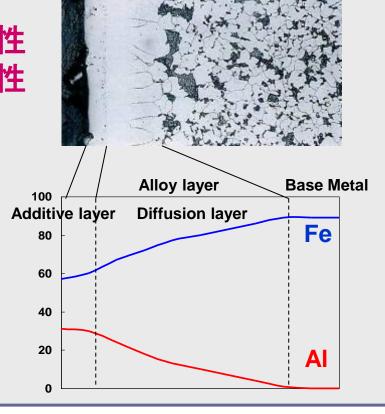
適用例

耐熱性被覆 : ボイラー金物

耐食性被覆 : 熱交換器用チューブ、ボイラーチューブ

耐摩耗性被覆:チェーンピン・ターボチャージャー部品

耐エロージョン被覆:タービンブレード、チェーンピン

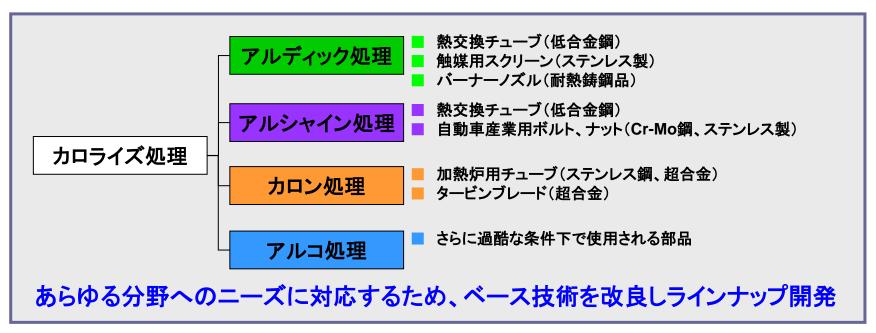


カロライズ処理:金属表面にアルミを拡散させる表面処理法

鉄ーアルミニウム合金は・・・

Gののは、耐高温酸化性 耐浸炭性 耐離型性

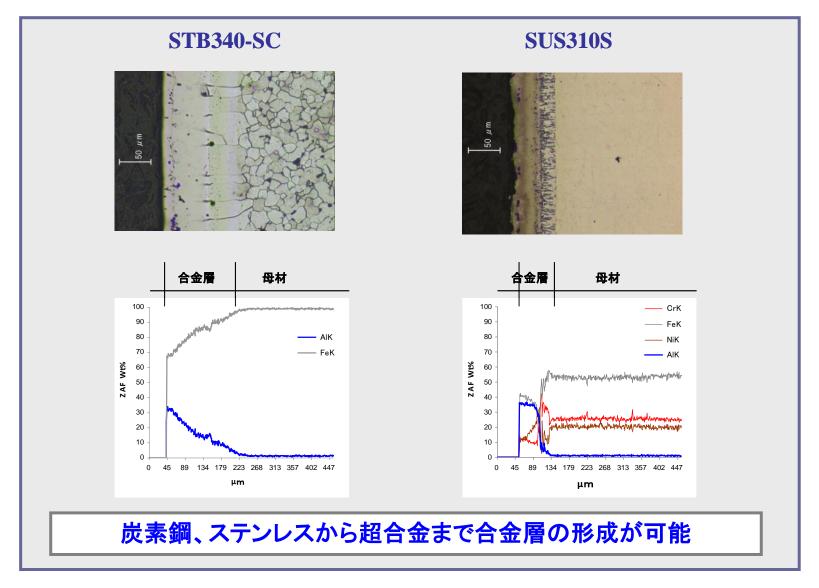
カロライズ処理は、母材金属材料 の物理的特性を損なうことなく組 織内にアルミニウムを拡散させ、 合金層を形成する方法。



7. カロライズ処理

カロライズ処理のラインナップ

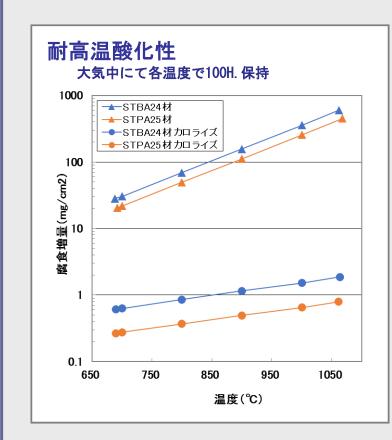
金属表面にアルミを拡散させ、耐高温酸化性に優れた被膜を形成します。

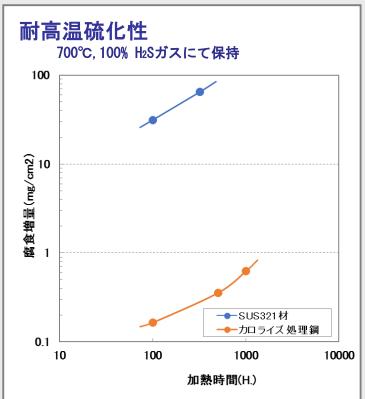

熱交換チューブにはアルシャイン処理が 採用されアルシャインチューブの名称で ご使用いただいております。

7. カロライズ処理

11/26

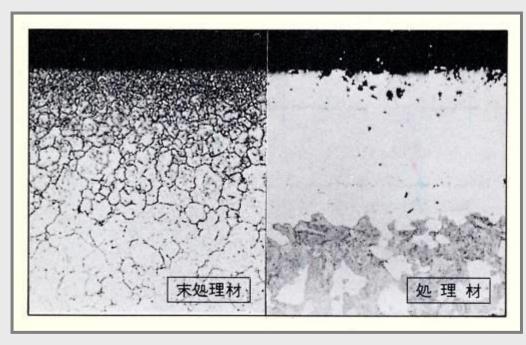
断面合金層性状





7. カロライズ処理

耐高温酸化性と耐高温硫化性

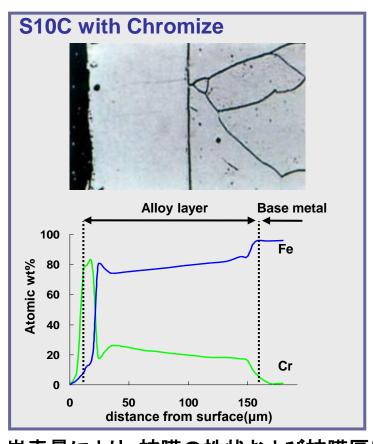


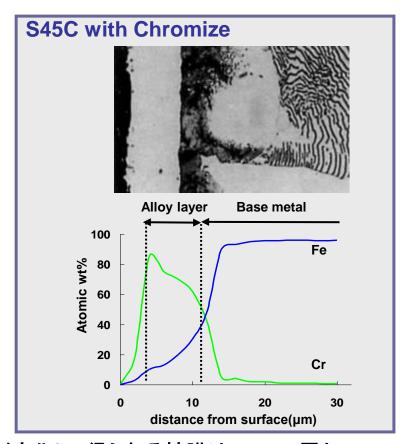
表面にアルミナを形成することで耐酸化性、耐食性に優れる

耐浸炭性

920℃×6Hr 浸炭処理後の断面組織

(材質:STBA24)

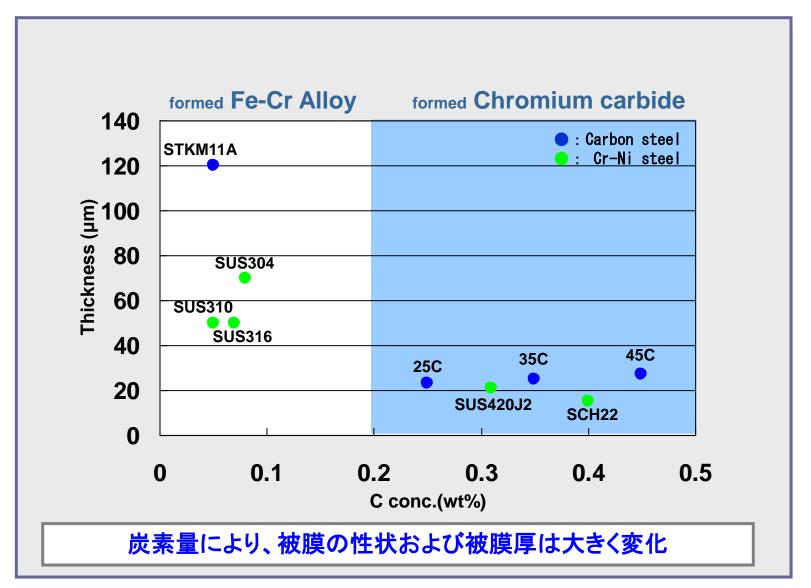

カロライズ処理は耐浸炭性に優れ、脆化を抑制する



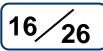
クロマイズ処理について

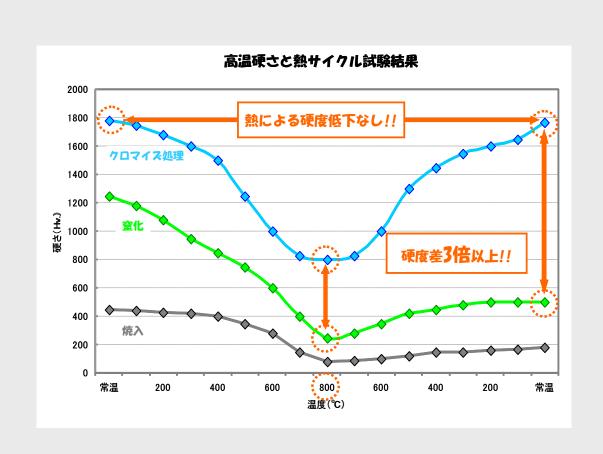
耐高温酸化性、耐摩耗性、耐焼付性に優れた被膜を形成します。

炭素量により、被膜の性状および被膜厚は大きく変化し、得られる被膜は、Fe-Cr層とCrC層に大別されます。

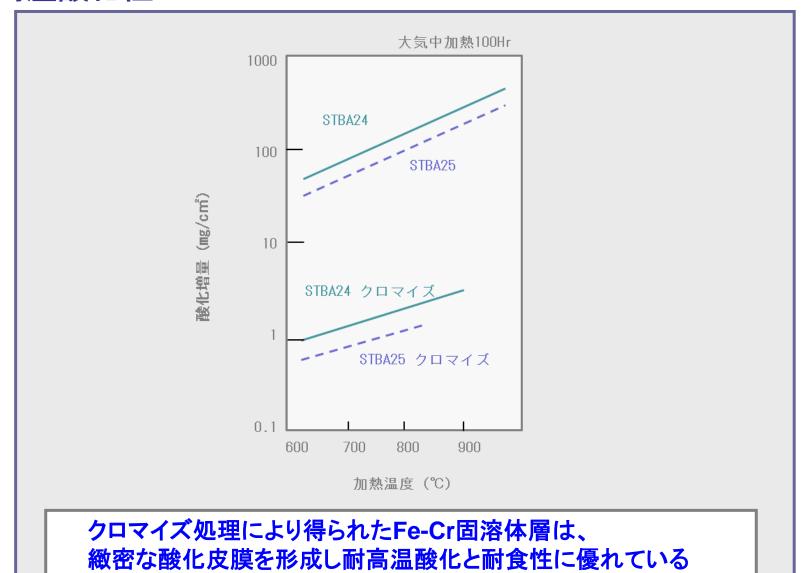

Fe-Cr層 : 緻密な酸化被膜を形成、耐高温酸化性を有する

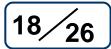
CrC層: Hv1400-1800の高硬度で耐摩耗性を有する



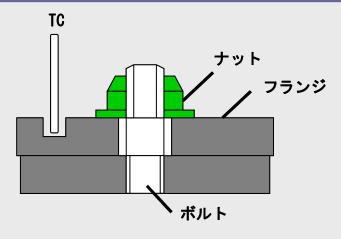

基材中の炭素量によるクロマイズ層の変化

高温硬さと温度による硬度変化

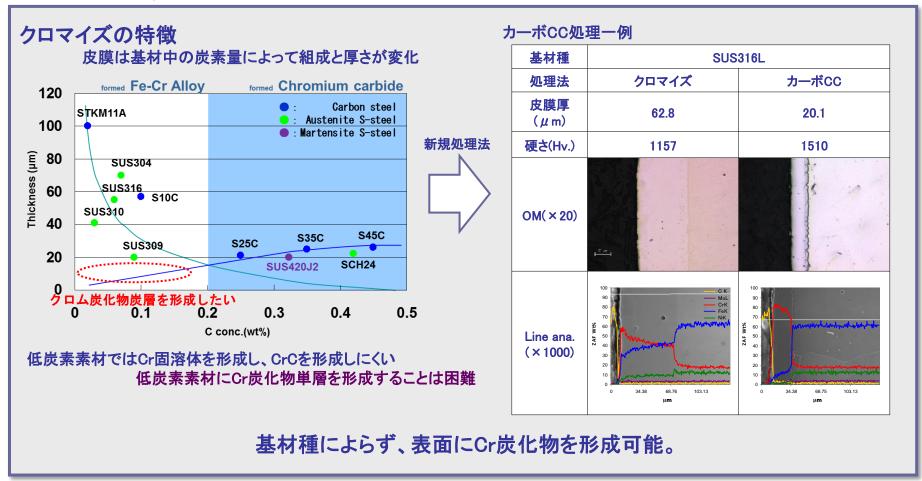

クロマイズ処理により得られたCrC層は、 800℃でもHV800以上を保持し分解しにくい



耐高温酸化性



耐高温焼付試験結果


口 材質と基本条件

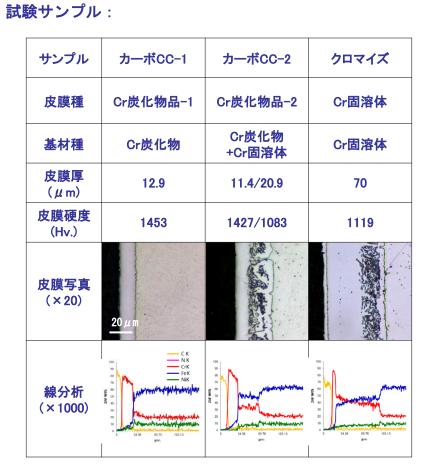
- ボルト ステンレス耐熱鋼
- ・ナット S45C+表面処理品
- ・フランジ SUS410L
- 締め付けトルク 600kgf・cm
- 加熱 大気炉中
- •冷却 空冷

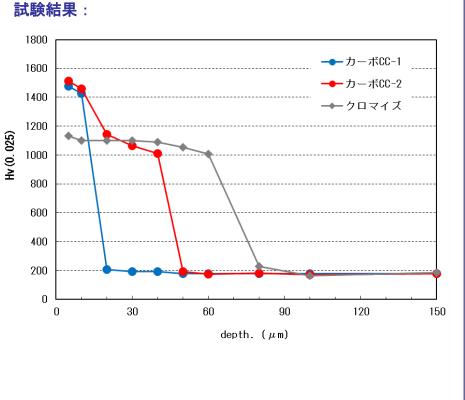
	焼付発生本数		
試験条件	クロマイズ ナット 3点カシメ	クロマイズ ナット リング 状カシメ	Znめっき・Crめっき ナットリング状カシメ
650°C × 4Hr ⇔ 60°C 20サイクル	0/6	0/6	4/6
700°C×4Hr ⇔ 60°C 20サイクル	0/6	0/6	4/6
750°C × 4Hr ⇔ 60°C 20サイクル	0/6	0/6	6/6

クロマイズ処理により得られたCrC層は、耐焼付性に優れる

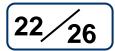
カーボCC処理:低炭素素材にCr炭化物を形成させる表面処理法

カーボCC処理:低炭素素材にCr炭化物を形成させる表面処理法


SUS310Sに対するCr拡散について


	サンプル	カーボ00-1	カーボ00-2	クロマイズ
皮	関厚(μm)	18. 1	10. 5/17. 3	28. 3
	Cr炭化物	1543	1478	_
硬	Cr固溶体	_	937	1095
度	皮膜直下	178	181	182
	基材内部	165	166	157
	0M × 20	50 µm	_ 50 µm	₁ —50 µm
l	_INE ANA. ×1000	100 90 80 70 70 70 70 70 70 70 70 70 7	90 90 80 90 80 90 90 90 90 90 90 90 90 90 9	100 90 80 76 60 40 30 20 0 34.31 68.62 102.93 µm

処理条件により、皮膜性状/被膜厚が変化。



硬度分布について 各種皮膜の硬度分布測定を実施した。

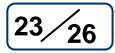
CASS試験について

各種皮膜の耐食性を判断するために、耐食性確認試験を実施した。

試験サンプル:

サンプル	カーボCC-1	カーボCC-2	SUS304
皮膜種	Cr炭化物	Cr炭化物 +Cr固溶体	-
基材種	SUS304	—	_
皮膜厚 (μ m)	12.9	11.4/20.9	_
皮膜硬度 (Hv.)	1453	1427/1083	_
皮膜写真 (×20)			-

試験条件: JIS H 8502に基づく キャス試験 • temp. 50℃

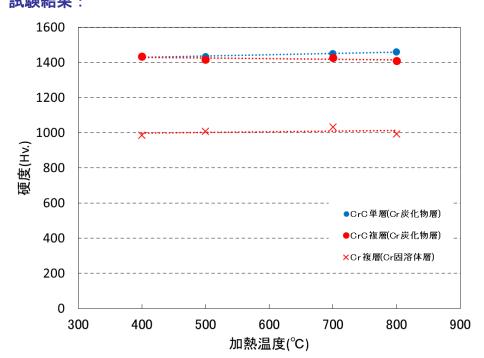

- 5% NaCI+CH3COOH+CuCI3 (pH3. 0)

- 24, 48, 72, 96H. (4サイクル)

・各段階の表面状態を観察。

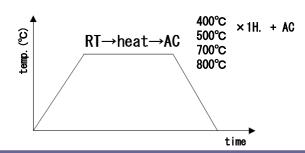
試験結果:

サンプル	カーボCC-1	カーボCC-2	SUS304
試験前			
24H.後			
48H.後			
72H.後			
96H.後			


加熱-保持後の硬度について

各種皮膜の加熱による硬度軟化を測定するために、加熱後、硬度測定を実施した。

試験サンプル:


サンプル	カーボCC-1	カーボCC-2
皮膜種	Cr炭化物	Cr炭化物 +Cr固溶体
基材種	SUS304	←
皮膜厚 (μ m)	12.9	11.4/20.9
皮膜硬度 (Hv.)	1453	1427/1083
皮膜写真 (×20)		

試験結果:



試験条件:

400, 500, 700, 800℃に加熱後、時間保持し空冷。

耐高温腐食性

ガスタービンブレード

Ni基 Co基超合金

自動車用部品

SS材 Cr-Mo材

ボイラーチューブ

STB, STBA ステンレス材

ガス炊飯器用部品

FC材

熱交換器チューブ

STB. STBA

化学反応用触媒

Ni

耐高温焼付性

自動車用部品

S45C

ガラス成型部品

SUS310S SUS416

石油化学等部品

SUS347 SUS321

耐摩耗性

自動車用部品

SCM材 SUS420J2

自動販売機用部品

SUS304

産業機械用部品

SUJ2

様々な環境で適用されています

輸送機器関係

機械プラント関係

株式会社日本製鋼所 三菱重工業株式会社 三菱重エコンプレッサ株式会社 新日本造機株式会社 荏原エリオット株式会社 株式会社ササクラ 日揮株式会社 千代田化工建設株式会社 東洋エンジニアリング株式会社 AGC株式会社

鉄鋼関係

日本製鉄株式会社 株式会社神戸製鋼所 JFEスチール株式会社

化学工業石油関係

ENEOS株式会社 出光興産株式会社 コスモ石油株式会社 昭和四日市石油株式会社 昭和シェル石油株式会社 昭和シェル石油株式会社 鹿島石油株式会社 東亜石油株式会社 東亜石油株式会社 東亜石油株式会社 東部石油株式会社 東邦亜鉛株式会社

機械部品関係

株式会社青山製作所 株式会社サトーラシ 株式会社アキタファインブランキング NSKワーナー株式会社 NTN株式会社 ボルグワーナー・モールスシステムス・・ ジャパン株式会社 株式会社椿本チエイン 株式会社ニチダイ

最後に

日本カロライズ工業はお客様の問題に対して、新たな処理方法や手法をお客様とともに開発し、お客様の問題解決に役立っていきたいと考えております。

今後とも日本カロライズの表面処理をよろしくお願い致します。

御静聴ありがとうございました。

〒520-3213 滋賀県湖南市大池町8 日本カロライズ工業株式会社

TEL:0748-75-1140

E-mail:nck-gyoumu@ex.biwa.ne.jp

NIHON CALORIZING CO.LTD.